No Liquor Sales | ||
National Institute on Alcohol Abuse and Alcoholism No.
18 PH 357 July 1992
The Genetics of Alcoholism
The idea that alcoholism runs in families is an
ancient one. In recent decades, science has advanced this idea from the
status of folk-observation to systematic investigation (1-3). In the 1970s,
studies documented that alcoholism does run in families (4,5). But does
alcoholism run in families because a child learns to become an alcoholic
from parents and the home environment, or because a child inherits genes
that create an underlying predisposition for alcoholism? Or both? The
studies did not resolve these questions.
Why do we do genetic research? The discovery of a
specific genetic effect on the development of alcoholism would be beneficial
for at least three reasons. First, it would lead to the identification
of some people at risk, who could act to avoid developing alcohol-related
problems (6,7). Second, it may help us to understand the role of environmental
factors that are critical in the development of alcoholism (8). Third,
it may lead to better treatments, based on new understandings of the physiological
mechanisms of alcoholism (9-11).
Although investigations of the inheritance of a vulnerability
to alcoholism are discussed here, a separate and distinct issue, not
addressed here, is the possibility that a vulnerability to organ damage
by alcohol is under some genetic control (12).
Researchers investigate possible genetic components
of alcoholism by studying populations and families as well as genetic,
biochemical, and neurobehavioral markers and characteristics (13,14).
Two major methods of investigating the inheritance of alcoholism are studies
of twins and of adoptees (15). Twin studies compare the incidence of alcoholism
in identical twins with the incidence of alcoholism in fraternal twins
(16,17). If there is a genetic component in the risk for alcoholism, then
identical twins, who have identical genes, would be expected to exhibit
similar histories of developing alcoholism (or not developing alcoholism).
Fraternal twins, who are genetically different individuals born at the
same time, would be more likely to differ in their tendencies to develop
alcoholism. In general, researchers using the twin method have found these
expectations to be true.
For example, Pickens and co-workers (18) studied
169 same-sex pairs of twins, both males and females, at least one of which
had sought treatment for alcoholism. The researchers found greater concordance
of alcohol dependence in identical twins than in fraternal twins. They
also found greater concordance of alcohol abuse (defined by DSM-III--Diagnostic
and Statistical Manual of Mental Disorders, Third Edition, of the
American Psychiatric Association) in identical male twins but not in identical
female twins. Other twin studies have produced more detailed information;
for example, Partanen and co-workers (19), in studying 902 male Finnish
twins, found that less severe drinking patterns were less heritable, and
more severe drinking patterns were more heritable.
Among the difficulties in designing twin studies
is accounting for unequal environmental conditions. Early studies assumed
that the environments of two fraternal twins were as similar to each other
as were the environments of two identical twins. Later studies showed
that the environments of identical twins are more alike than are the environments
of fraternal twins, and recent twin studies have taken this difference
into account (14). The results of twin studies are useful and have suggested
the possibility of a genetic component in inheritance (20); however, because
focuses of the studies have varied, the results are difficult to interpret.
009;Adoption studies may employ a number of techniques.
One is to compare the histories of children of alcoholics who are adopted
by nonalcoholics and grow up in a nondrinking environment with the histories
of children of nonalcoholics similarly raised in a nondrinking environment
(21-23). If genetic factors play a role, then the adopted children of
alcoholics should preferentially develop alcoholism as adults.
Problems in designing and interpreting adoption studies
result from, among other things, the lack of detailed data on parents
who give up children for adoption, and environmental biases (as in the
predominance of a certain type of adopting family) (24).
In a pioneering study of adopted Danish children,
Goodwin and co-workers found some evidence for the expected trends (4,21).
Cloninger and co-workers subsequently performed a series of much larger
studies of adoptees, which also revealed these trends (8,25).
Cloninger and co-workers (23) hypothesized that so-called
type II alcoholics--characterized as having an early onset of drinking
problems, usually being male, and displaying personality disorders such
as antisocial behavior--had a more heritable form of alcoholism (26).
However, other researchers have argued that the scenario of inheritance
is more complex, and what is inherited is a mix of personality traits,
such as those related to antisocial behavior, rather than alcoholism itself
(27). Genes might play a direct role in the development of alcoholism,
as in affecting the body's metabolism of alcohol; or they might play a
less direct role, influencing a person's temperament or personality in
such a way that the person becomes vulnerable to alcoholism.
Different models for the way in which alcoholism
runs in families have been suggested by a limited number of family studies.
Interpretation of these studies has been complicated by the likelihood
that alcoholism is a heterogeneous condition, that is, a collection of
different conditions that look similar, but whose mechanisms and modes
of inheritance may differ. Additional studies are needed to sort out the
mechanisms of transmission (28,29).
Population and family studies such as those cited
above attempt to establish the presence of a broad genetic influence on
alcoholism. To investigate specific genes, researchers have employed genetic
marker studies. If specific human genes are related to alcoholism, then
genes lying close to them on the same chromosome--and the traits they
determine--may be inherited at the same time that the risk of alcoholism
is inherited. This phenomenon is called linkage. An assortment of genes
hypothesized to be linked to alcoholism has been examined (30), but none
has passed a rigorous test for linkage (31).
Still being studied is a marker referred to as the
dopamine D2 receptor, which Blum and co-workers (32) found to be present
more often in alcoholics than in nonalcoholics (also see 33). In animal
studies, the dopamine D2 receptor had been associated with brain functions
relating to reward, reinforcement, and motivation. However, a number of
researchers have been unable to duplicate the results of Blum's study
(34,35). Some researchers believe dopamine D2 might modulate the severity
of alcoholism, rather than serve as a primary cause. The dopamine D2 association
continues to be interesting, but it does not seem to be transmitted in
families in such a way that it is responsible for alcoholism; its role,
if any, has yet to be determined (36).
To search the human genome for specific genes related
to alcoholism, researchers employ two experimental techniques. The first,
the candidate gene approach, involves hypothesizing that particular genes
are related to the physiology of alcoholism and then individually testing
these genes for linkage (37). The second approach, scanning of the human
genome, involves characterizing, piece by piece, the entire length of
DNA and finding ge nes that relate to alcoholism, without proposing candidate
genes.
Additionally, researchers use animal models to study
the genetics of alcoholism. These models have several advantages over
human subjects. Using animals, researchers can study larger numbers and
more generations of subjects, can arrange informative matings, can better
manipulate the environment, and can make measurements that would not be
possible on humans. The main limitation of using animals to study alcoholism
is that there is no animal model of alcoholism that encompasses the whole
spectrum of alcoholic behaviors in humans.
Researchers nevertheless have studied alcohol-related
behaviors in animals that are believed to resemble aspects of human alcoholism.
These include consumption of and preference for alcohol, sedation induced
by alcohol, locomotor activation by alcohol (thought by some investigators
to model the euphoric effects of alcohol in humans), motor discoordination
and hypothermia induced by alcohol, withdrawal from alcohol, and tolerance
to various effects of alcohol (38). Researchers have succeeded in breeding
lines of rodents with high or low measures of most of these traits; this
success demonstrates that the traits are substantially genetically determined
in rodents.
Researchers, using animals, have yet to identify
a single gene responsible for any alcohol-related behavior. They have
established that all of the above-mentioned traits are determined by multiple
genes, and that the individual traits are, for the most part, determined
independently of each other. One useful distinction revealed by studies
using animals is that genes determining the tendency to become tolerant
to certain effects of alcohol are different from genes determining the
severity of withdrawal symptoms (even though in a clinical setting these
reactions are often seen together) (38). Using the powerful genetic methods
available in animals, investigators are beginning to map genes responsible
for some of the animals' alcohol-related behaviors. The recent development
of a scheme that makes it possible to predict the location on the human
genome of a similar gene mapped in a mouse will provide an additional
source of candidate genes for linkage studies in humans (39). This approach
also will help to distinguish those animal behaviors now under study that
will be most valuable for understanding human alcohol-related behavior.
The Genetics of Alcoholism--A Commentary by Progress has been made in understanding genetic
vulnerability to alcoholism. We know, for instance, that more than one
gene is likely to be responsible for this vulnerability. We now must determine
what these genes are and whether they are specific for alcohol or define
something more general, such as differences in temperament or personality
that increase an individual's vulnerability to alcoholism. We must also
determine how genes and the environment interact to influence vulnerability
to alcoholism. Based on our current understanding, it is probable that
environmental influences will be at least as important, and possibly more
important, than genetic influences. Success in uncovering the genes involved
in a vulnerability to alcoholism will help us to recognize the potential
for alcoholism in high-risk individuals, to intervene at an early stage,
and to develop new treatments for alcohol-related problems. This is a
productive area of research that will continue to yield important answers
to the basic questions of what causes alcoholism and how we can prevent
and treat it.
References
(1) Roe, A. The adult adjustment of children of
alcoholic parents raised in foster homes. Quarterly Journal of Studies
on Alcohol 5:378-393, 1944. (2) Goodwin, D.W. The genetics
of alcoholism: A state of the art review. Alcohol Health & Research
World 2(3):2-12, 1978. (3) Goldman, D., & Linnoila, M.
Genetic approaches to alcoholism. Progress in Neuro-Psychopharmacology
and Biological Psychiatry 10:237-242, 1986. (4) Goodwin, D.W.;
Schulsinger, F.; Moller, N.; Hermansen, L.; Winokur, G.; & Guze, S.B.
Drinking problems in adopted and nonadopted sons of alcoholics. Archives
of General Psychiatry 31:164-169, 1974. (5) Cotton, N.S. The
familial incidence of alcoholism: A review. Journal of Studies on Alcohol
40:89-116, 1979. (6) Goodwin, D.W. Biological factors in alcohol
use and abuse: Implications for recognizing and preventing alcohol problems
in adolescence. International Review of Psychiatry 1:41-49, 1989.
(7) Goodwin, D.W. Genetic determinants of reinforcement from alcohol.
In: Cox, W.M., ed. Why People Drink: Parameters of Alcohol as a Reinforcer.
New York: Gardner Press, 1990. pp. 37-50. (8) Cloninger, C.R.;
Bohman, M.; & Sigvardsson, S. Inheritance of alcohol abuse: Cross-fostering
analysis of adopted men. Archives of General Psychiatry 36:861-868,
1981. (9) Begleiter, H., & Porjesz, B. Potential biological
markers in individuals at high risk for developing alcoholism. Alcoholism:
Clinical and Experimental Research 12:488-493, 1988. (10) Goedde,
H.W., & Agarwal, D.P., eds. Alcoholism: Biomedical and Genetic
Aspects. New York: Pergamon Press, 1989. (11) Crabbe, J.C., &
Harris, R.A., eds. The Genetic Basis of Alcohol and Drug Actions.
New York: Plenum Press, 1991. (12) Annoni, G.; Weiner, F.R.; Colombo,
M.; Czaja, M.J.; & Zern, M.A. Albumin and collagen gene regulation
in alcohol- and virus-induced human liver disease. Gastroenterology
98:197-202, 1990. (13) Cloninger, C.R., & Begleiter, H.,
eds. Genetics and Biology of Alcoholism: Banbury Report 33. New
York: Cold Spring Harbor Laboratory Press, 1990. (14) McGue, M.
"Genes, Environment, and the Etiology of Alcoholism." Paper presented
at the Working Group on the Development of Alcohol-Related Problems in
High-Risk Youth conference, Washington, DC, Nov. 14-16, 1991. (15)
Pickens, R.W., & Svikis, D.S. Genetic influences in human substance
abuse. Journal of Addictive Diseases 10:205-214, 1991. (16)
Hrubec, Z., & Omenn, G.S. Evidence of genetic predisposition to
alcoholic cirrhosis and psychosis: Twin concordances for alcoholism and
its biological endpoints by zygosity among male veterans. Alcoholism:
Clinical and Experimental Research 5:207-212, 1981. (17) Pickens,
R.W., & Svikis, D.S. The twin method in the study of vulnerability
to drug abuse. In: Pickens, R.W., and Svikis, D.S., eds. Biological
Vulnerability to Drug Abuse. National Institute on Drug Abuse Research
Monograph Series No. 89. DHHS Pub. No. (ADM)88-1590. Washington, DC: Supt.
of Docs., U.S. Govt. Print. Off., 1988. pp. 41-51. (18) Pickens, R.W.;
Svikis, D.S.; McGue, M.; Lykken, D.T.; Heston, L.L.; & Clayton, P.J.
Heterogeneity in the inheritance of alcoholism. Archives of General
Psychiatry 48:19-28, 1991. (19) Partanen, J.; Bruun, K.; &
Markkanen, T. Inheritance of Drinking Behavior. Helsinki: Finnish
Foundation for Alcohol Studies, 1966. (20) Kendler, K.S.; Heath,
A.C.; Neale, M.C.; Kessler, R.C.; & Eaves, L.J. A population-based
twin study of alcoholism in women. Journal of the American Medical
Association 268(14): 1877-1882, 1992. (21) Goodwin, D.W.; Schulsinger,
F.; Hermansen, L.; Guze, S.B.; & Winokur, G. Alcohol problems in adoptees
raised apart from alcoholic biological parents. Archives of General
Psychiatry 28:238-243, 1973. (22) Cadoret, R.J.; Cain, C.A.;
& Grove, W.M. Development of alcoholism in adoptees raised apart from
alcoholic biologic relatives. Archives of General Psychiatry 37:561-563,
1980. (23) Cloninger, C.R.; Bohman, M.; Sigvardsson, S.; &
von-Knorring, A.L. Psychopathology in adopted-out children of alco holics:
The Stockholm adoption study. In: Galanter, M., ed. Recent Developments
in Alcoholism. Vol. 3. New York: Plenum Press, 1985. pp. 37-51. (24)
Searles, J.S. The role of genetics in the pathogenesis of alcoholism.
Journal of Abnormal Psychology 97(2):153-167, 1988. (25) Bohman,
M.; Sigvardsson, S.; & Cloninger, C.R. Maternal inheritance of
alcohol abuse: Cross-fostering analysis of adopted women. Archives
of General Psychiatry 38:965-969, 1981. (26) Cloninger, C.R.
Neurogenetic adaptive mechanisms in alcoholism. Science 236:410-416,
1987. (27) Schuckit, M.A. Biological vulnerability to alcoholism.
Journal of Consulting and Clinical Psychology 55(3):301-309, 1987.
(28) Hill, S.Y. Absence of paternal sociopathy in the etiology
of severe alcoholism: Is there a type III alcoholism? Journal of Studies
on Alcohol 53:161-169, 1992. (29) Gilligan, S.B.; Reich, T.;
& Cloninger, C.R. Etiologic heterogeneity in alcoholism. Genetic
Epidemiology 4:395-414, 1987. (30) Cook, C.C., & Gurling,
H.M. Candidate genes and favored loci for alcoholism. In: Cloninger, C.R.,
and Begleiter, H., eds. Genetics and Biology of Alcoholism: Banbury
Report 33. New York: Cold Spring Harbor Laboratory Press, 1990. pp.
227-236. (31) Goldman, D. Molecular markers for linkage of genetic
loci contributing to alcoholism. In: Galanter, M., ed. Recent Developments
in Alcoholism. Vol. 6. New York: Plenum Press, 1988. pp. 333-349.
(32) Blum, K.; Noble, E.P.; Sheridan, P.J.; Montgomery, A.; Ritchie,
T.; Jagadeeswaran, P.; Nogami, H.; Briggs, A.H.; & Cohn, J.B. Allelic
association of human dopamine D2 receptor gene in alcoholism. Journal
of the American Medical Association 263(15):2055-2060, 1990. (33)
Comings, D.E.; Comings, B.G.; Muhleman, D.; Dietz, G.; Shahbahrami,
B.; Tast, D.; Knell, E.; Kocsis, P.; Baumgarten, R.; Kovacs, B.W.; Levy,
D.L.; Smith, M.; Borison, R.L.; Evans, D.D.; Klein, D.N.; MacMurray, J.;
Tosk, J.M.; Sverd, J.; Gysin, R.; & Flanagan, S.D. The dopamine D2
receptor locus as a modifying gene in neuropsychiatric disorders. Journal
of the American Medical Association 266(13):1793-1800, 1991. (34)
Bolos, A.M.; Dean, M.; Lucas-Derse, S.; Ramsburg, M.; Brown, G.L.;
& Goldman, D. Population and pedigree studies reveal a lack of association
between the dopamine D2 receptor gene and alcoholism. Journal of the
American Medical Association 264:3156-3160, 1990. (35) Turner,
E.; Ewing, J.; Shilling, P.; Smith, T.L.; Irwin, M.; Schuckit, M.;
& Kelsoe, J.R. Lack of association between an RFLP near the D2 dopamine
receptor gene and severe alcoholism. Biological Psychiatry 31:285-290,
1992. (36) Karp, R.W. D2 or not D2? Alcoholism: Clinical and
Experimental Research 16:786-787, 1992. (37) Goldman, D., &
Haber, R. Genetic variation in serotonin and ALDH underlying alcoholism.
In: Cloninger, C.R., and Begleiter, H., eds. Genetics and Biology of
Alcoholism: Banbury Report 33. New York: Cold Spring Harbor Laboratory
Press, 1990. pp. 237-252. (38) Phillips, T.J., & Crabbe, J.C.
Behavioral studies of genetic differences in alcohol action. In: Crabbe,
J.C., and Harris, R.A., eds. The Genetic Basis of Alcohol and Drug
Actions. New York: Plenum Press, 1991. pp. 25-104. (39) Nadeau,
J.H. Linkage and Synteny Homologies Between Mouse and Man.
Bar Harbor, ME: Jackson Laboratory, 1990.
All material contained in the Alcohol Alert is in the public
domain and may be used or reproduced without permission from NIAAA. Citation
of the source is appreciated.
Copies of the Alcohol Alert are available free of charge
from the Scientific Communications Branch, Office of Scientific Affairs,
NIAAA, Willco Building, Suite 409, 6000 Executive Boulevard, Bethesda,
MD 20892-7003. Telephone: 301-443-3860.
|